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Modified Borel summation of divergent series and critical-exponent estimates for aiN-vector
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An approach to summation of divergent field-theoretical series is suggested. It is based on the Borel trans-
formation combined with a conformal mapping and does not imply the exact asymptotic parameters to be
known. The method is tested on functions expanded in their asymptotic power series. It is applied to estimating
the critical exponent values for &hvector field model, describing magnetic and structural phase transitions in
cubic and tetragonal crystals, from five-loe@xpansions[S1063-651X98)04310-4

PACS numbg(s): 64.60.Ak, 64.60.Fr, 75.40.Cx

Recently Kleinert and Schulte-Frohlinde calculated renor- The aims of the present work are as followig. To sug-
malization groupRG) functions for the cubic model in4e  gest an approach to summation of the divergent field-
dimensions within the five-loop approximation of the renor-theoretical series, which is based on the Borel transformation
malized perturbation theorji]. The critical (margina) di- ~ combined with a conformal mapping, but which does not
mensionalityN, of the order parameter field found on the involve the exact values of the asymptotic parameters. This
basis of those expansions turned out to be smaller than 3 @PProach, being the result of a computer study of the Borel
three dimensions. This means that the critical behavior of théUmmation procedure, is tested on functions expanded in

model should be controlled by the cubic fixed point with atheir asymptotic power series, on calculation of the ground
state of the unharmonic oscillator, and on estimation of the

specific set of critical exponents. Thus, calculation of the>'“ °
critical exponent values for the cubic model is an actuaF_”_t'C"J‘I exponent V?"“e?f” the basic mo_dels of phase tran-
itions. (ii) To obtain critical exponent estimates for the cu-

problem. Since the model of concern describes the critic FHons . ) . .
. . . ic (simplest anisotropicmodel in three dimensions from
behavior of cubic and tetragonal crystals undergoing mag; . . :
the record five-loope expansiong1], using the developed

netic and structural phase transitions, critical exponent eSt't'e chnique

mates can be compared with e>_<per|menta| data. We would like to emphasize that the problem of process-
_ The field-theoretical RG SEres are known to be badlying divergent series arises in various fields of physics where

d|ver_g§nt. To e>_<t_ract the p_hysmal information relevant toy,q perturbation theory is employed but the parameter of

predicting the critical behavior of real systems, they 5h°U|dexpansion is not small. So, developing a resummation pro-

be processed by a proper resummation procedure. The serigsqure that could be effective where conventional methods

for N. obtained in Ref[1] proved to be alternating in signs fajl is of general interest.

that allowed to resum it by the simple Padethod. At the A modification of the Borel procedure via a conformal

same time, the critical exponent series are irregular and camapping was introduced in R¢6] and used for processing

not be processed by the ordinafyade PadeBorel, Pade  seriesS,f,g¥, whose coefficients at large ordebehaved as

Borel-Leroy techniques. A more sophisticated method ofk!kPo(—a,)¥. To the serie€,f, g the function

the Borel transformation combined with a conformal map-

ping, although regarded as the most universal procedure, is

inapplicable as well, because it requires knowing the exact F(g:a,b)= f“e, x/ag

values of the asymptotic parameters characterizing the high- o

order behavior of the series. Nowadays those parameters

have been evaluated for the simplest case of the

O(N)-symmetric models onlf2,3], and calculating them for is associated. The Borel transfoBix) is the analytical con-

anisotropic models is a most difficult problem as yet un-tinuation of its Taylor serie¥ [ f,/a“T'(b+k+1)]x* abso-

solved. As an exception one can mention the anisotropitutely convergent in the unity circle. Usually=a,, whereas

guartic quantum oscillator, which represents a onethe parametelp may be related to the exact asymptotic value

dimensionale?-field theory with the cubic anisotropy. For by in a variety of ways[5,6]. Conformal mappingw

the perturbation expansion of the ground-state energy of this yx+1—1/Jx+1+1 transforms the cut-plain \C—1,

system, the asymptotic parameters were found in Riéf. —o0) onto the unity circle, and the semiaXi8,<), the do-

main of integration, goes over into the interj&l,1). Sup-
posingB(x) may be continued over the cut-plain, the com-

*Electronic address: aimudrov@dg2062.spb.edu posite functionB(x(w)) is holomorphic within the unity
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FIG. 1. (a) Graphs of dependence GfiL(O.S;a,b), L =13, on parametds for some values of parametar (b) Graphs of dependence of

F1(g;1)b) on parameteb in sixth, ninth, and twelfth order i for g=1.

circle and its Taylor series admits integration before summaF, (g;a,b) is theL-partial sum of the serie®). In practice,
tion. In order to eliminate the possible singularity of one deals with a piece of the series only, where the
B(x(w)) at w=1, an additional parametarwas introduced asymptotic regime might not be reached. For this reason, in
in Ref. [6] and used in Refd.7,8]: B(x(w))= A(\,w)/(1  Refs.[5,9,10 the parameteb was varied in a neighborhood
—w)?. It is chosen from the condition of the most rapid of by. We believe that in the case of the unknown exact
convergence of the series asymptotic value, similar manipulations may apply to the
parametem as well.

F(g;a,b)=k2O Ak(h)f:e* xlag

b Our approach to using the procedure described above con-
sists in the following. While processing the asymptotic series

ag of a priori given functions, we have revealed that the quan-
X © (X) tity F|(g;a,b) remains stable as the parametei@ndb vary
= — (2)  inawide range. With the “number of loops” increasing, the
ag/ [1—wX(x)]* (a,b) dependence becomes weaker and weaker, and the dif-

ference betweeR | (g;a,b) and the exact valuE(g) can be
that is, from minimizing the quantity|]1— F (g;a,b)/ made small with any accuracy. This observation enables us
F__1(g;a,b)|, where L is the step of truncation and to employ the Borel transformation with a conformal map-
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FIG. 2. Convergence of the numerical estimates of the funcﬁ(m)=ff§e”‘2’9x4dx depending on the approximation orderfor g
=1. The dashed line corresponds to the exact value 1.368 42. Theupper and lower broken lines yield, respectively, the upper and
lower boundaries for the estimate. The best estimate is given by the middle line.

ping for processing series whose exact asymptotic behavigdhow, deviate from the exact numberF(Q)
is unknown. Thus, we postulate the stability of the result of=1 486 3108 . . . by nomore than 510 > within the
the processing with respect to variationsondb as a basic  range 6<b<18.

principle underlying our approach. For the functionF(g) the exact asymptotic value afis
Let us demonstrate how this principle works on some o=4. As the parametea shifts froma,, the picture does

simple examples. At first, consider a model function not change qualitatively, although at large numbers one can
see a reduction of thie-stability interval, as displayed in Fig.

. F( 2k + E 1(a). For smalla, the set{)\imm(a,b)} is just empty within the
F(g)= o gy S (1) g interval[0,6]. In all cases the lines in thelr.stabmty domains
w =0 k! are at the same level with the above mentioned accuracy. So,

on the graph of7—‘i13(g;a,b) depending on two parameteas

whose coefficientsf, behave as[(—4)¥/\2=](k!/k) at and b there vyould be a_horizontal part—a plateau rapidly
largek. For eacha andb in Eq. (2) we find the set of values destroyed at its boundaries. .

(A (ab)} at which the quantity |1— F (g;a,b)/ The size of the plateau depends essentiallgokvheng
Fi_1(g:a,b) | as a function of\ reaches its local minima. gets smaller, the stability domain is enlarged. That is in ac-
To each element of that set corresponds the particular valugPrd with intuitive expectations that the decrease of the ex-
]—'iL(g;a,b). It can be shown that taking into account relative Pansion variable should result in better convergence. So, the
contributions of lower order terms of the seriés<(L) when cailculatlons show that for the family Oif five curves
optimizing the\ parameter just weakly affects the final re- F1(0.1;20,b), the relative error |F350.135,b)

sult, therefore it is sufficient to minimize the relative contri- — F(0.1)/F(0.1)| does not exceed 210 ° within the in-
bution of the last accounted term only. In Figall a few  terval 0O<b<25. On the contrary, the growth gfleads to a
curvesF;5(0.5;a9,b) are presented, which, as calculationsreduction of the stability domain. Let us follow how its size

TABLE I. Numerical estimates for the anharmonic oscillator ground-state energy &t

L 8 9 10 11 12 Exact value

&(1) 1.392376 1.392357 1.392344 1.392349 1.392351 1.392352
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FIG. 3. Curves demonstrating dependence of the result of processing the critical expohemt parameteb for various values of
for the cubic model aN=2 in the five-loop approximation.

changes from loop to loop, assumiggr 1. Presented in Fig. the model functions considered above. In Table | we present
1(b) are the most stable curveg|(1.0;ay,b) for L the estimates of(g) atg=1 depending on the length of the
=6,9,12. As seen from the graphs, by accounting for moreseries. Note that for =8 our estimate is closer by one order
terms of the expansion the behavior of the curves improvegp the exact value than the number 1.391 685004 562
and the dispersion of the values goes down. The graph illusound in Ref.[12] on the basis of Wynn's algorithm.
trating convergence of numerical estimates’fg) for g The fulfiled numerical analysis allows us to apply the
=1 depending on the truncation numbleris depicted in  introduced summation method to find numerical estimates of
Fig. 2. the critical exponents for the (4e)-dimensional cubic
When processing functiongge X(xd,)? (1/1+gx) dx  model[1] in three dimensionse=1). Theb dependence of
~3r_o(—1)kkIkPogk, whereb,=0, we observed a similar the results of processing the exponent* for N=2 at vari-
stability with respect toa and b. We also processed the ous fixeda is presented in Fig. 3. The parameteranges
six-loop pieces of RG series for the critical exponents of therom 0.2 to 1.5 with step 0.1. Distinct oscillations correspond
O(N)-symmetric model in three dimensions and found veryto the small values o& andb. As a grows, the behavior of
weak dependence of the output on the transformation paranthe curves becomes smoother and the extended horizontal
eters. The numerical values of the critical exponents cominterval appears, reaching its maximum length at akmut
puted proved to be in good agreement with those of f@f. =0.5. Further increase & causes the stability interval to
Using the proposed summation method for processing thget shorter and causes the rapid growth of the curves at its
series of the ground-state energyg) of the anharmonic boundaries. It is essential that for all valuesaghe horizon-
oscillator [11] with the HamiltonianH=x?+gx* we ob- tal parts of the curves are at the same level. Averaging the
served the same behavior of the corresponding curves as foesults of the processing over the stability domain gives the

TABLE II. Critical exponents for the cubic model in three dimensions from the five-loop approximation
in e for someN.

N _
n v Y Vsc b% ’yscx 100%
Vsc

2 0.0350G+0.0003 0.627%0.0010 1.2358 0.0040 1.2334 0.19%
3 0.0375-0.0005 0.699% 0.0024 1.3746:0.0020 1.3732 0.10%
4 0.0365+0.0005 0.722%0.0022 1.4208 0.0030 1.4186 0.15%
5 0.0358:0.0004 0.729€:0.0016 1.4305%0.0040 1.4319 0.10%
6 0.0354+0.0003 0.730%0.0016 1.4322:0.0040 1.4344 0.15%
o 0.0350+0.0003 0.71080.0010 1.3993 0.0020 1.3967 0.19%
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number that we adopt as *. The accuracy for this approxi- data of Table Il atN=2. Our estimates are also in good
mate value is determined through the dispersion due to thagreement with the results of R€10], where a substantially
variation ofa and b. Similar behavior of the curves was different method was employed.
observed for other critical exponents. Applying to them the In conclusion, let us formulate the results of the present
developed algorithm, we obtain the critical exponent valuegaper. An approach to summation of divergent series has
for the cubic model for variousl listed in Table Il. been suggested. The method employs the Borel transforma-
The caséN = corresponds to the Ising model with equi- ion combined with a conformal mapping. It relies upon the
librium magnetic impurities. In this limit the Ising critical Stability of the result of processing on the transformation
exponentsyr andv are renormalized according to Fist&s]. parameters and therefore does not require knowing the exact
The values of, », and y were computed by processing asymptotic behavpr of the series. The_ method h_as be_en
original series fory, v, andy~*, while y, was found by tested on the funct_|ons_ expangjed in their asymptotic series
the scalingy.= v(2— n). It is seen from the table that, and applied to estimating critical exponent values for the

. . . cubic model. The principal observation is that within our
differs from y by no more than 0.2%, and this may confirm gn55ach - summation of the perturbative series of both

the good accuracy of the estimates obtained. simple and complexanisotropi¢ models exhibits the same

_Let us compare our results with earlier estimates of thyehavior. This allows one to apply the developed technique
critical exponents for the pure Ising model. It is known thattg process divergent series arising in a number of anisotropic
due to the symmetry of the initial Hamiltonian of the cubic models describing phase transitions in real substarieBsit
model atN=2, the critical exponents for the cubic and the can be expected that the proposed summation method may
Ising fixed points coincide. The following estimates werebe useful in other fields of physio®.g., QCD and QED
found for the Ising mode[8]: =0.035-0.002,»=0.628 where one deals with divergent series, but conventional re-
+0.001. These numbers are in excellent agreement with theummation techniques are inapplicable.

[1] H. Kleinert and V. Schulte-Frohlinde, Phys. Lett.32, 284 Eksp. Teor. Fiz.77, 1035(1979 [Sov. Phys. JETP0, 521
(1995. ] (1979].

[2] L. N. Lipatov, Zh. Eksp. Teor. Fiz72, 411(1977 [Sov. Phys. [8] S. G. Gorishny, S. A. Larin, and F. V. Tkachev, Phys. Lett.
JETP45, 216 (1977)]. 101A, 120(1984.

[3] E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phys. Rev. D [9] J. C. Le Guillou and J. Zinn-Justin, Phys. Rev.2B, 3976
15, 1544(1977; 15, 1558(1977. (1980.

[4] H. Kleinert, S. Thoms, and W. Janke, Phys. Rev5% 915  [10] J. C. Le Guillou and J. Zinn-Justin, J. PhyBrance Lett. 46,
(1997); e-print quant-ph/9605033. L137 (1985.

[5] J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. L&®, 95 [11] C. M. Bender and T. T. Wu, Phys. Rel84, 1231(1969.
(1977). [12] I. O. Mayer, Theor. Math. Phyg5, 234 (1988.

[6] D. I. Kazakov, O. V. Tarasov, and D. V. Shirkov, Theor. Math. [13] M. E. Fisher, Phys. Re\l76, 257 (1968.
Phys.38, 15(1979. [14] A. I. Mudrov and K. B. Varnashev, Phys. Rev. &, 3562

[7] A. A. Vladimirov, D. I. Kazakov, and O. V. Tarasov, Zh. (1998.



