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Modified Borel summation of divergent series and critical-exponent estimates for anN-vector
cubic model in three dimensions from five-loope expansions
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An approach to summation of divergent field-theoretical series is suggested. It is based on the Borel trans-
formation combined with a conformal mapping and does not imply the exact asymptotic parameters to be
known. The method is tested on functions expanded in their asymptotic power series. It is applied to estimating
the critical exponent values for anN-vector field model, describing magnetic and structural phase transitions in
cubic and tetragonal crystals, from five-loope expansions.@S1063-651X~98!04310-4#

PACS number~s!: 64.60.Ak, 64.60.Fr, 75.40.Cx
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Recently Kleinert and Schulte-Frohlinde calculated ren
malization group~RG! functions for the cubic model in 42e
dimensions within the five-loop approximation of the reno
malized perturbation theory@1#. The critical ~marginal! di-
mensionalityNc of the order parameter field found on th
basis of those expansions turned out to be smaller than
three dimensions. This means that the critical behavior of
model should be controlled by the cubic fixed point with
specific set of critical exponents. Thus, calculation of
critical exponent values for the cubic model is an act
problem. Since the model of concern describes the crit
behavior of cubic and tetragonal crystals undergoing m
netic and structural phase transitions, critical exponent e
mates can be compared with experimental data.

The field-theoretical RG series are known to be ba
divergent. To extract the physical information relevant
predicting the critical behavior of real systems, they sho
be processed by a proper resummation procedure. The s
for Nc obtained in Ref.@1# proved to be alternating in sign
that allowed to resum it by the simple Pade´ method. At the
same time, the critical exponent series are irregular and
not be processed by the ordinary~Padé, Pade´-Borel, Pade´-
Borel-Leroy! techniques. A more sophisticated method
the Borel transformation combined with a conformal ma
ping, although regarded as the most universal procedur
inapplicable as well, because it requires knowing the ex
values of the asymptotic parameters characterizing the h
order behavior of the series. Nowadays those parame
have been evaluated for the simplest case of
O(N)-symmetric models only@2,3#, and calculating them for
anisotropic models is a most difficult problem as yet u
solved. As an exception one can mention the anisotro
quartic quantum oscillator, which represents a o
dimensionalw4-field theory with the cubic anisotropy. Fo
the perturbation expansion of the ground-state energy of
system, the asymptotic parameters were found in Ref.@4#.
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The aims of the present work are as follows.~i! To sug-
gest an approach to summation of the divergent fie
theoretical series, which is based on the Borel transforma
combined with a conformal mapping, but which does n
involve the exact values of the asymptotic parameters. T
approach, being the result of a computer study of the Bo
summation procedure, is tested on functions expanded
their asymptotic power series, on calculation of the grou
state of the unharmonic oscillator, and on estimation of
critical exponent values for the basic models of phase tr
sitions.~ii ! To obtain critical exponent estimates for the c
bic ~simplest anisotropic! model in three dimensions from
the record five-loope expansions@1#, using the developed
technique.

We would like to emphasize that the problem of proce
ing divergent series arises in various fields of physics wh
the perturbation theory is employed but the parameter
expansion is not small. So, developing a resummation p
cedure that could be effective where conventional meth
fail is of general interest.

A modification of the Borel procedure via a conform
mapping was introduced in Ref.@5# and used for processin
series(kf kg

k, whose coefficients at large orderk behaved as
k!kb0(2a0)k. To the series(kf kg

k the function

F~g;a,b!5E
0

`

e2 x/agS x

agD b

dS x

agDB~x! ~1!

is associated. The Borel transformB(x) is the analytical con-
tinuation of its Taylor series(k @ f k /akG(b1k11)# xk abso-
lutely convergent in the unity circle. Usuallya5a0 , whereas
the parameterb may be related to the exact asymptotic val
b0 in a variety of ways @5,6#. Conformal mappingv
5 Ax1121/Ax1111 transforms the cut-plain C\@21,
2`) onto the unity circle, and the semiaxis@0,̀ !, the do-
main of integration, goes over into the interval@0,1!. Sup-
posingB(x) may be continued over the cut-plain, the com
posite functionB„x(v)… is holomorphic within the unity
5371 © 1998 The American Physical Society
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FIG. 1. ~a! Graphs of dependence ofF L
i (0.5;a,b), L513, on parameterb for some values of parametera. ~b! Graphs of dependence o

F L
i (g;1,b) on parameterb in sixth, ninth, and twelfth order ing for g51.
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circle and its Taylor series admits integration before summ
tion. In order to eliminate the possible singularity
B„x(v)… at v51, an additional parameterl was introduced
in Ref. @6# and used in Refs.@7,8#: B„x(v)…5 A(l,v)/(1
2v)2l. It is chosen from the condition of the most rap
convergence of the series

F~g;a,b!5 (
k50

`

Ak~l!E
0

`

e2 x/agS x

agD b

3dS x

agD vk~x!

@12vk~x!#2l
, ~2!

that is, from minimizing the quantityu12 FL(g;a,b)/
FL21(g;a,b) u, where L is the step of truncation an
-FL(g;a,b) is theL-partial sum of the series~2!. In practice,
one deals with a piece of the series only, where
asymptotic regime might not be reached. For this reason
Refs.@5,9,10# the parameterb was varied in a neighborhoo
of b0 . We believe that in the case of the unknown exa
asymptotic valuea0 similar manipulations may apply to th
parametera as well.

Our approach to using the procedure described above
sists in the following. While processing the asymptotic ser
of a priori given functions, we have revealed that the qua
tity FL(g;a,b) remains stable as the parametersa andb vary
in a wide range. With the ‘‘number of loops’’ increasing, th
(a,b) dependence becomes weaker and weaker, and the
ference betweenFL(g;a,b) and the exact valueF(g) can be
made small with any accuracy. This observation enables
to employ the Borel transformation with a conformal ma
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FIG. 2. Convergence of the numerical estimates of the functionF(g)5*2`
1`e2x22gx4

dx depending on the approximation orderL for g
51. The dashed line corresponds to the exact value 1.368 427 . . . . Theupper and lower broken lines yield, respectively, the upper
lower boundaries for the estimate. The best estimate is given by the middle line.
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ping for processing series whose exact asymptotic beha
is unknown. Thus, we postulate the stability of the result
the processing with respect to variation ofa andb as a basic
principle underlying our approach.

Let us demonstrate how this principle works on so
simple examples. At first, consider a model function

F~g!5E
2`

1`

e2x22gx4
dx; (

k50

`

~21!k

GS 2k1
1

2D
k!

gk

whose coefficientsf k behave as@(24)k/A2p#(k!/k) at
largek. For eacha andb in Eq. ~2! we find the set of values
$lmin

i (a,b)% at which the quantity u12 FL(g;a,b)/
FL21(g;a,b) u as a function ofl reaches its local minima
To each element of that set corresponds the particular v
F L

i (g;a,b). It can be shown that taking into account relati
contributions of lower order terms of the series (k,L) when
optimizing thel parameter just weakly affects the final r
sult, therefore it is sufficient to minimize the relative cont
bution of the last accounted term only. In Fig. 1~a!, a few
curvesF 13

i (0.5;a0 ,b) are presented, which, as calculatio
or
f

e

ue

show, deviate from the exact numberF(g)
51.486 310 82 . . . by no more than 531025 within the
range 0<b<18.

For the functionF(g) the exact asymptotic value ofa is
a054. As the parametera shifts from a0 , the picture does
not change qualitatively, although at large numbers one
see a reduction of theb-stability interval, as displayed in Fig
1~a!. For smalla, the set$lmin

i (a,b)% is just empty within the
interval @0,6#. In all cases the lines in their stability domain
are at the same level with the above mentioned accuracy
on the graph ofF 13

i (g;a,b) depending on two parametersa
and b there would be a horizontal part—a plateau rapid
destroyed at its boundaries.

The size of the plateau depends essentially ong. Wheng
gets smaller, the stability domain is enlarged. That is in
cord with intuitive expectations that the decrease of the
pansion variable should result in better convergence. So,
calculations show that for the family of five curve
F 13

i (0.1;a0 ,b), the relative error u F 13
i (0.1;a0 ,b)

2F (0.1)/F (0.1) u does not exceed 231026 within the in-
terval 0<b<25. On the contrary, the growth ofg leads to a
reduction of the stability domain. Let us follow how its siz
2

TABLE I. Numerical estimates for the anharmonic oscillator ground-state energy atg51.

L 8 9 10 11 12 Exact value

E(1) 1.392376 1.392357 1.392344 1.392349 1.392351 1.39235
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FIG. 3. Curves demonstrating dependence of the result of processing the critical exponentg21 on parameterb for various values ofa
for the cubic model atN52 in the five-loop approximation.
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changes from loop to loop, assumingg51. Presented in Fig
1~b! are the most stable curvesF L

i (1.0;a0 ,b) for L
56,9,12. As seen from the graphs, by accounting for m
terms of the expansion the behavior of the curves improv
and the dispersion of the values goes down. The graph il
trating convergence of numerical estimates ofF(g) for g
51 depending on the truncation numberL is depicted in
Fig. 2.

When processing functions*0
`e2x(x]x)

b0 (1/11gx) dx
;(k50

` (21)kk!kb0gk, whereb0>0, we observed a simila
stability with respect toa and b. We also processed th
six-loop pieces of RG series for the critical exponents of
O(N)-symmetric model in three dimensions and found ve
weak dependence of the output on the transformation par
eters. The numerical values of the critical exponents co
puted proved to be in good agreement with those of Ref.@5#.

Using the proposed summation method for processing
series of the ground-state energyE(g) of the anharmonic
oscillator @11# with the HamiltonianH5x21gx4, we ob-
served the same behavior of the corresponding curves a
e
s,
s-

e
y
m-
-

e

for

the model functions considered above. In Table I we pres
the estimates ofE(g) at g51 depending on the length of th
series. Note that forL58 our estimate is closer by one ord
to the exact value than the number 1.391 65560.004 562
found in Ref.@12# on the basis of Wynn’se algorithm.

The fulfilled numerical analysis allows us to apply th
introduced summation method to find numerical estimate
the critical exponents for the (42e)-dimensional cubic
model@1# in three dimensions (e51). Theb dependence of
the results of processing the exponentg21 for N52 at vari-
ous fixeda is presented in Fig. 3. The parametera ranges
from 0.2 to 1.5 with step 0.1. Distinct oscillations correspo
to the small values ofa andb. As a grows, the behavior of
the curves becomes smoother and the extended horizo
interval appears, reaching its maximum length at aboua
50.5. Further increase ofa causes the stability interval to
get shorter and causes the rapid growth of the curves a
boundaries. It is essential that for all values ofa the horizon-
tal parts of the curves are at the same level. Averaging
results of the processing over the stability domain gives
tion
TABLE II. Critical exponents for the cubic model in three dimensions from the five-loop approxima
in e for someN.

N h n g gsc g2gsc

gsc
3100%

2 0.035060.0003 0.627760.0010 1.235860.0040 1.2334 0.19%
3 0.037560.0005 0.699760.0024 1.374660.0020 1.3732 0.10%
4 0.036560.0005 0.722560.0022 1.420860.0030 1.4186 0.15%
5 0.035860.0004 0.729060.0016 1.430560.0040 1.4319 0.10%
6 0.035460.0003 0.730160.0016 1.432260.0040 1.4344 0.15%
` 0.035060.0003 0.710860.0010 1.399360.0020 1.3967 0.19%
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number that we adopt asg21. The accuracy for this approxi
mate value is determined through the dispersion due to
variation of a and b. Similar behavior of the curves wa
observed for other critical exponents. Applying to them t
developed algorithm, we obtain the critical exponent valu
for the cubic model for variousN listed in Table II.

The caseN5` corresponds to the Ising model with equ
librium magnetic impurities. In this limit the Ising critica
exponentsa andn are renormalized according to Fisher@13#.
The values ofh, n, and g were computed by processin
original series forh, n21, andg21, while gsc was found by
the scaling:gsc5n(22h). It is seen from the table thatgsc
differs from g by no more than 0.2%, and this may confir
the good accuracy of the estimates obtained.

Let us compare our results with earlier estimates of
critical exponents for the pure Ising model. It is known th
due to the symmetry of the initial Hamiltonian of the cub
model atN52, the critical exponents for the cubic and th
Ising fixed points coincide. The following estimates we
found for the Ising model@8#: h50.03560.002,n50.628
60.001. These numbers are in excellent agreement with
D

h.

.

e

e
s

e
t

he

data of Table II atN52. Our estimates are also in goo
agreement with the results of Ref.@10#, where a substantially
different method was employed.

In conclusion, let us formulate the results of the pres
paper. An approach to summation of divergent series
been suggested. The method employs the Borel transfor
tion combined with a conformal mapping. It relies upon t
stability of the result of processing on the transformati
parameters and therefore does not require knowing the e
asymptotic behavior of the series. The method has b
tested on the functions expanded in their asymptotic se
and applied to estimating critical exponent values for
cubic model. The principal observation is that within o
approach, summation of the perturbative series of b
simple and complex~anisotropic! models exhibits the sam
behavior. This allows one to apply the developed techniq
to process divergent series arising in a number of anisotro
models describing phase transitions in real substances@14#. It
can be expected that the proposed summation method
be useful in other fields of physics~e.g., QCD and QED!
where one deals with divergent series, but conventional
summation techniques are inapplicable.
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